p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.3Q8, C24.7C22, C23.79C23, (C2×C4).16D4, C2.8(C4⋊D4), C22.72(C2×D4), C2.8(C22⋊Q8), C22.22(C2×Q8), C2.C42⋊4C2, (C22×C4).8C22, C2.4(C42⋊2C2), C22.39(C4○D4), (C2×C4⋊C4)⋊6C2, (C2×C22⋊C4).8C2, SmallGroup(64,77)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.Q8
G = < a,b,c,d,e | a2=b2=c2=d4=1, e2=bd2, eae-1=ab=ba, dad-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 165 in 93 conjugacy classes, 39 normal (7 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C24, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23.Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C4⋊D4, C22⋊Q8, C42⋊2C2, C23.Q8
Character table of C23.Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(2 26)(4 28)(5 32)(6 16)(7 30)(8 14)(9 15)(10 29)(11 13)(12 31)(18 24)(20 22)
(1 21)(2 22)(3 23)(4 24)(5 15)(6 16)(7 13)(8 14)(9 32)(10 29)(11 30)(12 31)(17 27)(18 28)(19 25)(20 26)
(1 25)(2 26)(3 27)(4 28)(5 9)(6 10)(7 11)(8 12)(13 30)(14 31)(15 32)(16 29)(17 23)(18 24)(19 21)(20 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 29 23 12)(2 32 24 11)(3 31 21 10)(4 30 22 9)(5 28 13 20)(6 27 14 19)(7 26 15 18)(8 25 16 17)
G:=sub<Sym(32)| (2,26)(4,28)(5,32)(6,16)(7,30)(8,14)(9,15)(10,29)(11,13)(12,31)(18,24)(20,22), (1,21)(2,22)(3,23)(4,24)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,27)(18,28)(19,25)(20,26), (1,25)(2,26)(3,27)(4,28)(5,9)(6,10)(7,11)(8,12)(13,30)(14,31)(15,32)(16,29)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,29,23,12)(2,32,24,11)(3,31,21,10)(4,30,22,9)(5,28,13,20)(6,27,14,19)(7,26,15,18)(8,25,16,17)>;
G:=Group( (2,26)(4,28)(5,32)(6,16)(7,30)(8,14)(9,15)(10,29)(11,13)(12,31)(18,24)(20,22), (1,21)(2,22)(3,23)(4,24)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,27)(18,28)(19,25)(20,26), (1,25)(2,26)(3,27)(4,28)(5,9)(6,10)(7,11)(8,12)(13,30)(14,31)(15,32)(16,29)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,29,23,12)(2,32,24,11)(3,31,21,10)(4,30,22,9)(5,28,13,20)(6,27,14,19)(7,26,15,18)(8,25,16,17) );
G=PermutationGroup([[(2,26),(4,28),(5,32),(6,16),(7,30),(8,14),(9,15),(10,29),(11,13),(12,31),(18,24),(20,22)], [(1,21),(2,22),(3,23),(4,24),(5,15),(6,16),(7,13),(8,14),(9,32),(10,29),(11,30),(12,31),(17,27),(18,28),(19,25),(20,26)], [(1,25),(2,26),(3,27),(4,28),(5,9),(6,10),(7,11),(8,12),(13,30),(14,31),(15,32),(16,29),(17,23),(18,24),(19,21),(20,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,29,23,12),(2,32,24,11),(3,31,21,10),(4,30,22,9),(5,28,13,20),(6,27,14,19),(7,26,15,18),(8,25,16,17)]])
C23.Q8 is a maximal subgroup of
C42.162D4 C23.301C24 C23.311C24 C23.313C24 C23.316C24 C23.324C24 C24.258C23 C24⋊4Q8 C24.267C23 C24.268C23 C23.349C24 C23.350C24 C23.352C24 C23.354C24 C23.356C24 C24.278C23 C23.360C24 C24.282C23 C24.285C23 C24.286C23 C23.369C24 C24.289C23 C24.290C23 C23.374C24 C23.375C24 C23.380C24 C24.573C23 C23.397C24 C23.412C24 C24.309C23 C23.418C24 C23.419C24 C23.422C24 C23.425C24 C23.426C24 C23.429C24 C23.434C24 C24.327C23 C23.456C24 C23.458C24 C42.175D4 C23.473C24 C24.338C23 C24.340C23 C23.479C24 C24.345C23 C23.494C24 C42⋊23D4 C23.508C24 C42⋊25D4 C24.587C23 C24⋊5Q8 C42.188D4 C23.530C24 C42⋊30D4 C42.192D4 C23.543C24 C23.544C24 C23.548C24 C24.375C23 C23.550C24 C23.551C24 C24.376C23 C23.554C24 C42⋊32D4 C42.198D4 C24.379C23 C23.567C24 C23.572C24 C23.574C24 C24.384C23 C23.576C24 C23.578C24 C23.581C24 C24.389C23 C23.583C24 C23.585C24 C23.591C24 C23.592C24 C23.593C24 C24.401C23 C23.595C24 C23.597C24 C23.600C24 C24.407C23 C23.602C24 C24.408C23 C23.605C24 C23.606C24 C23.607C24 C23.611C24 C23.615C24 C23.616C24 C23.618C24 C23.620C24 C23.621C24 C23.625C24 C23.627C24 C24.421C23 C23.630C24 C23.631C24 C23.632C24 C23.635C24 C24.427C23 C23.640C24 C23.643C24 C24.430C23 C24.434C23 C23.649C24 C24.435C23 C24.438C23 C24.440C23 C24.443C23 C23.668C24 C23.672C24 C23.675C24 C23.677C24 C23.679C24 C24.448C23 C23.681C24 C23.683C24 C24.450C23 C23.686C24 C23.688C24 C24.454C23 C23.693C24 C23.695C24 C23.700C24 C23.701C24 C24.459C23 C23.714C24 C42.199D4 C42⋊35D4 C23.725C24 C23.726C24 C23.727C24 C23.729C24 C23.730C24 C23.731C24 C23.736C24 C23.737C24 C23.738C24 C23.741C24 C24.15Q8 C24.2A4
C2p.(C4⋊D4): C42⋊15D4 C24.252C23 C24.259C23 C23.329C24 C42.166D4 C42.168D4 C42⋊28D4 (C22×C4).37D6 ...
C23.Q8 is a maximal quotient of
C24.631C23 C24.633C23
C24.D2p: C24.5Q8 C24.17D6 C24.6D10 C24.6D14 ...
(C2×C4p).D4: M4(2).12D4 M4(2).13D4 C4⋊C4.106D4 (C2×Q8).8Q8 (C2×C4).23D8 (C2×C8).52D4 (C2×C12).56D4 (C2×C20).56D4 ...
C2p.(C4⋊D4): C24.Q8 M4(2).15D4 (C22×C4).37D6 (C22×D5).Q8 (C22×D7).Q8 ...
Matrix representation of C23.Q8 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 2 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0] >;
C23.Q8 in GAP, Magma, Sage, TeX
C_2^3.Q_8
% in TeX
G:=Group("C2^3.Q8");
// GroupNames label
G:=SmallGroup(64,77);
// by ID
G=gap.SmallGroup(64,77);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,2,144,121,55,362,332]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=1,e^2=b*d^2,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export